Appendix A Shear Wall Design

Shear Wall Forces (With Expantion Joint After Adding Required Walls)							
Wall #	£ Story	V (k)	M (ft-k)	Wall #	Story	V (k)	M (ft-k)
1	ROOF	4.89	88.042	6	ROOF	13.48	1.1233333
	EIGHTH STORY	35.96	543.566		EIGHTH FLOOR	61.65	5.1375
	SEVENTH STORY	61.63	1324.201		SEVENTH FLOOR	154.16	12.846667
	SIXTH STORY	83.58	2271.43		SIXTH FLOOR	225.76	18.813333
	FIFTH STORY	100.69	3412.537		FIFTH FLOOR	282.5	23.541667
	FOURTH STORY	114	4704.484		FOURTH FLOOR	326.05	27.170833
	THIRD STORY	121.38	6080.153		THIRD FLOOR	372.68	31.056667
	SECOND STORY	136.72	8176.503		SECOND FLOOR	410.05	34.170833
•	FIRST FLOOR	126.15	9942.546	↓	FIRST FLOOR	443.25	36.9375
2	ROOF	9.16	164.894	7	ROOF	3.08	0.2566667
	EIGHTH STORY	59.32	709.516		EIGHTH FLOOR	7.7	0.6416667
	SEVENTH STORY	107.9	2076.223		SEVENTH FLOOR	13.88	1.1566667
	SIXTH STORY	157.71	3863.623		SIXTH FLOOR	16.64	1.3866667
	FIFTH STORY	178.1	5882.127		FIFTH FLOOR	20.9	1.7416667
	FOURTH STORY	241.12	8614.811		FOURTH FLOOR	17.62	1.4683333
	THIRD STORY	291.28	11915.989		THIRD FLOOR	42.8	3.5666667
	SECOND STORY	339.24	17117.619		SECOND FLOOR	-25.56	-2.13
	FIRST FLOOR	387.54	22543.137	•	FIRST FLOOR	129.4	10.783333
3	ROOF	11.52	207.421	8	ROOF	16.02	1.335
	EIGHTH STORY	15.48	403.533		EIGHTH FLOOR	60.98	5.0816667
	SEVENTH STORY	19.58	651.525		SEVENTH FLOOR	153.17	12.764167
	SIXTH STORY	20.91	888.562		SIXTH FLOOR	224.55	18.7125
	FIFTH STORY	22.86	1147.663		FIFTH FLOOR	281.15	23.429167
	FOURTHSTORY	57.96	1804.491		FOURTH FLOOR	324.51	27.0425
	THIRD STORY	8/./9	2/99.42/		IHIRD FLOOR	3/1.04	30.92
↓	SECOND STORY	110.01	4495.478		SECOND FLOOR	408.85	34.070833
4	FIRST FLOOR	115.74	1 00/1667	,	FIRST FLOOR	439.0	50.05 19.09
4	KUUF	12.05	1.004100/	9	KUUF	227.70	10.90
	EIGHTH FLOOR	100.29	11.100000		EIGHTH FLOOR	504.90	32.00 19 11667
	SEVENTH FLOOR	417.85	24.190555		SEVENTH FLOOR	745 20	40.441007
	SIATH FLOOR	510.07	12 255822		SIATH FLOOR	880.76	72 206667
	FOURTH FLOOR	508 77	43.233633		FOURTH FLOOR	1005.06	83.83
	THIPD FLOOR	676.56	49.0973 56.38		THIRD FLOOR	11/0 6	05.05
	SECOND ELOOR	717 94	59 828333		SECOND ELOOR	1353 12	112 76
↓	FIRST FLOOR	676 39	56 365833	↓	FIRST FLOOR	873.48	68 623333
5	ROOF	-6 34	-0 528333	10	ROOF	49 57	4 1308333
Ĩ	EIGHTH FLOOR	54.81	4 5675		EIGHTH FLOOR	97.5	8.125
	SEVENTH FLOOR	136.25	11.354167		SEVENTH FLOOR	160.24	13.353333
	SIXTH FLOOR	197.95	16.495833		SIXTH FLOOR	160.24	13.353333
	FIFTH FLOOR	246.57	20.5475		FIFTH FLOOR	160.24	13.353333
	FOURTH FLOOR	284.17	23.680833		FOURTH FLOOR	255.84	21.32
	THIRD FLOOR	324.57	27.0475		THIRD FLOOR	245.59	20.465833
	SECOND FLOOR	353.15	29.429167		SECOND FLOOR	435.8	36.316667
★	FIRST FLOOR	424.75	35.395833	↓	FIRST FLOOR	435.8	36.316667

	Shear Wall Forces (With Expantion Joint After Adding Required Walls)							
Wall #	Story	V (k)	M (ft-k)		Wall #	Story	V (k)	M (ft-k)
11	ROOF	119.39	9.949167		15	ROOF	8.5	153.026
	EIGHTH FLOOR	181.5	15.125			EIGHTH STORY	10.87	290.756
	SEVENTH FLOOR	271.17	22.5975			SEVENTH STORY	13.53	462.088
	SIXTH FLOOR	344.35	28.69583			SIXTH STORY	14.03	621.061
	FIFTH FLOOR	399.47	33.28917			FIFTH STORY	13.8	777.498
	FOURTH FLOOR	430.97	35.91417			FOURTH STORY	41.45	1247.234
	THIRD FLOOR	439.81	36.65083			THIRD STORY	64.24	1975.336
	SECOND FLOOR	429.53	35.79417			SECOND STORY	79.16	3189.1
+	FIRST FLOOR	407.37	33.9475		Ļ	FIRST FLOOR	92.19	4479.733
12	ROOF	57.71	4.809167		16	ROOF	3.12	56.158
	EIGHTH FLOOR	113.94	9.495			EIGHTH STORY	26.05	56.158
	SEVENTH FLOOR	184.94	15.41167			SEVENTH STORY	44.22	386.133
	SIXTH FLOOR	237.68	19.80667			SIXTH STORY	59.9	946.307
	FIFTH FLOOR	276.52	23.04333			FIFTH STORY	72.07	1625.211
	FOURTH FLOOR	306.17	25.51417			FOURTH STORY	82.2	2442.044
	THIRD FLOOR	290.58	24.215			THIRD STORY	90.94	3373.646
	SECOND FLOOR	276.93	23.0775			SECOND STORY	93.09	4404.259
+	FIRST FLOOR	497.58	41.465		¥	FIRST FLOOR	109.65	5831.622
13	ROOF	58.26	4.855		17	ROOF	-31.25	-472.522
	EIGHTH FLOOR	109.09	9.090833			EIGHTH STORY	-54.63	-863.06
	SEVENTH FLOOR	178.14	14.845			SEVENTH STORY	-74.06	-1256.55
	SIXTH FLOOR	238.08	19.84			SIXTH STORY	-82.04	-1491.19
	FIFTH FLOOR	285.55	23.79583			FIFTH STORY	-107.3	-1859.8
	FOURTH FLOOR	318.2	26.51667			FOURTH STORY	-132.9	-2296.84
	THIRD FLOOR	339.2	28.26667			THIRD STORY	-153.8	-2800.75
	SECOND FLOOR	309.16	25.76333			SECOND STORY	-161.1	-3555.13
+	FIRST FLOOR	268.36	22.36333		+	FIRST FLOOR	-160.9	-3677.9
14	ROOF	-90.81	-7.5675		18	ROOF	-1.11	39.706
	EIGHTH FLOOR	77.04	6.42			EIGHTH STORY	25.76	255.609
	SEVENTH FLOOR	143.39	11.94917			SEVENTH STORY	44.1	677.067
	SIXTH FLOOR	196.43	16.36917			SIXTH STORY	61.4	1187.429
	FIFTH FLOOR	239.02	19.91833			FIFTH STORY	77.8	1835.307
	FOURTH FLOOR	267.47	22.28917			FOURTH STORY	80.38	2451.4
	THIRD FLOOR	287.89	23.99083			THIRD STORY	80.72	3015.326
	SECOND FLOOR	302.01	25.1675			SECOND STORY	89.53	3907.391
+	FIRST FLOOR	342.37	28.53083		+	FIRST FLOOR	93.02	4605.752

Shear V	Vall Forces (Post-Ter	nsioned Con	ference Wing)
Wall #	Story	V (k)	M (ft-k)
19	SECOND STORY	30.7	552.57
+	FIRST FLOOR	105.9	2035.153
20	THIRD STORY	36.34	401.063
	SECOND STORY	81.17	1383.472
*	FIRST FLOOR	133.52	2457.171
21	THIRD STORY	86.49	673.003
	SECOND STORY	134.03	1485.795
*	FIRST FLOOR	150.91	1780.027
22	THIRD STORY	-64.42	-522.838
	SECOND STORY	-76.77	-1354.448
*	FIRST FLOOR	-132.26	-2492.499
23	THIRD STORY	51.46	536.867
	SECOND STORY	127.4	2046.526
*	FIRST FLOOR	187.63	3618.693
24	THIRD STORY	15.01	113.387
	SECOND STORY	32.8	306.455
. ↓	FIRST FLOOR	53.76	673.614
25	THIRD STORY	91.48	1311.237
	SECOND STORY	170.72	4384.221
. ↓	FIRST FLOOR	229.98	7603.877
26	THIRD STORY	105.41	1510.87
	SECOND STORY	177.75	4710.306
↓	FIRST FLOOR	241.47	8090.857
27	THIRD STORY	138.88	1990.617
	SECOND STORY	227.89	6092.708
₩	FIRST FLOOR	348.38	10969.995

12" Concrete Shear Wall Schedule								
Floor	1	2	3	4	5	6	7	8
Length	11.7	18.5	11.7	23.5	18.58	19.7	8.75	19.7
Boundary Element	T.1-59, T.1-61	T.1-59, U.1-59	U.1-59,U.1-61	U.66	U-69	U-71	U-71, U-72	T-72
8 7 6 5 4 3 2 1 G	#5@18"	#5@18"	#5@18" ↓	#5@18" ↓ #5@16"	#5@18"	#5@18"	#5@18"	#5@18"

12" Concrete Shear Wall Schedule								
Floor	9	10	11	12	13	14	15	16
Length	26.2	18.5	20.67	18.5	9	20.67	11.4	11.4
Boundary Element	S-72	Q-71	N-71	R-7 1	N-71, M-71	M-7 1	U.1-63, U.1-65	T.1-63, T.1-65
8 7 6 5 4 3 2 1	#5@14" ↓ #5@10" ↓ #5@16"	#5@18"	#5@18"	#5@18"	#5@18"	#5@18"	#5@18"	#5@18"

	12" Concrete Shear Wall Schedule							
Wall #	17	18	19	20	21	22		
Length	17.5	9.25	20.67	19.75	12.2	19.75		
Boundary Element	R.2-59, S-59	S-59, S-61	_	-	-	_		
8 7	#5@18" I	#5@18" 						
6								
5 4								
3								
2			#5@18"	#5@18" 	#5@18" 	#5@18" I		
G	↓	↓	u e eete	↓	↓	↓		

	12" Concrete Shear Wall Schedule								
Wall #	23	24	25	26	27				
Length	18.25	9.67	28	28	28				
Boundary Element	-	-	-	-	-				
8 7 6 5 4 3									
2 1 G	#5@18" ↓	#5@18" ↓	#5@18" ↓	#5@18"	#5@18" ↓				

The above schedules give the length, reinforcement, and boundary element locations for all shear walls. To view the reinforcement designed for the shear wall boundary elements see the column schedules in Appendix C.

	Shear Wall I				
Engineer:	Joe Sharkey				
Date:	3/19/2007				
Job:	Christiana Hospital Project				
Shear Wall #	1 - Ground Floor through 2nd				

Material Properties	
Concrete Strength - f'c (psi) =	5000
Reinforcement Strength - fy (psi) =	60000

Wall Dimensions				
Length - d (ft) =	11.7			
Width - w (in) =	16			
Height - h (ft) =	118			

Boundary Element Dimensions

\downarrow		
4	d	
•		

18

18

Wall Loads	
Pu (kip) =	813
Mu (ft-kip) =	9943
Vu (kip) =	126

Boundary Element

Axial Force - Pu_{be} (kip) = 1256.329

Length - $d_{be}(in) =$

Width - $w_{be}(in) =$

ACI 21.7.6.3	Boundary Element Check
	Ag (ft ²) = 17.6
	$lg (in^4) = 255.552$
	Extreme Fiber Comp Fc (ksi) = 2.104066

	Longitudinal & Transverse Reinforcemen	t			
ACI 21.7.2.2	One Curtain of Reinf. Req.				
	Acv (in ² /ft) =	192			
	Longitudinal - ρ_{I} , Transverse - $\rho t \ge 0.0025$				
	$As_{Ireq'd}$ (in ² /ft) =	0.48			
	As _{supplied} (in ²) =	0.62	#5 Bars]	
	Bar Diameter (in) =	0.625		-	
	Required Spacing - S _{req'd} (in) =	15.5	ОК		
	Spacing Supplied - S _{supplied} (in) =	15			
	Shear Capacity Check				
	$\alpha_{\rm c} = h_{\rm w}/l_{\rm w}$	2	hw/lw>2 t	herefore use 2	2
	Acv_{total} (in ²) =	2534.4			
	Transverse - ρt =	0.002583			
	Nominal Shear Capacity - Vn (kip) =	751.2503			
	Shear Capacity - ΦVn (kip) =	450.7502	ОК		
	Boundary Element Capacity Che	ck		1	
	$\Delta st (in2) =$	18 72	12_#11	4	
	0 =	0.057778	0K	J	
	Pst Pn(max) (kin) =	1936 512	U.N.		
	Axial Load Capacity - ΦPn (kip) =	1355.558	ок		
	Check With Interaction Diagram	n			
	Determine Confinement Reinforcement for Bo	undary Fle	ments	1	
	Max, Allowable Vert, Spacing - Smax (in) =	4			
	Vert. Spacing Supplied - S _{supplied} (in) =	4			
	Short Direction (in) =	18			
	Long Direction (in) =	18			
	Bar Diameter (in) =	0.625	#5 Bar		
	Cover from center of Vert. Reinf. To Col. Face (in) =	3			
	As of one Bar (in ²) =	0.31		🖣 🛛 🗍	• •
	Area Bounded by out-to-out of hoops - Ach (in ²) =	192.5156			
	Short Direction		I		
	Number of Crossties In Short Derection =	12.25			
	HC (HI) =	13.23			<u> </u>
	Required the matrix in Short Direction - Ash (in) = A_{2} provided (in ²) =	0.904949	OK		Croootia
	Long Direction	1.24	UK		Crossile
	Number of Crossties In Short Derection =	4			
	hc (in) =	13.25	I		
	Req'd Reinf. In Short Direction - Ash (in^2) =	0.904949			
	As provided $(in^2) =$	1.24	ок		

Shear Wall De		esign	
Engineer:	Joe Sharkey		
Date:	3/19/2007		
Job:	Christiana Hospital Project		
Shear Wall #	1 - 3rd through 8th		

Material Properties				
Concrete Strength - f'c (psi) =	4000			
Reinforcement Strength - fy (psi) =	60000			

Wall Dimensions		
Length - d (ft) =	11.7	
Width - w (in) =	12	
Height - h (ft) =	118	

Boundary Element Dimensions		
Length - d _{be} (in) =	18	
Width - w _{be} (in) =	18	

Wall Loads	
Pu (kip) =	586
Mu (ft-kip) =	4704
Vu (kip) =	114

Boundary Element	
Axial Force - Pu _{be} (kip) =	695.0513

ACI 21.7.6.3	Boundary Element Check		
	Ag (ft^2) =	13.2	
	$lg(in^4) =$	191.664	
	Extreme Fiber Comp Fc (ksi) =	1.433176	

	Longitudinal & Transverse Reinforcemen	t	
ACI 21.7.2.2	One Curtain of Reinf. Req.		-
	Acv (in ² /ft) =	144	
	Longitudinal - ρ_{I} , Transverse - $\rho t \ge 0.0025$		
	$As_{Ireq'd} (in^2/ft) =$	0.36	
	As _{supplied} (in ²) =	0.62	#5 Bars
	Bar Diameter (in) =	0.625	
	Required Spacing - S _{req'd} (in) =	20.66667	NOT OK Spacing Must Be Less Than 18in
	Spacing Supplied - S _{supplied} (in) =	18	
	Shear Capacity Check		
	$\alpha_{\rm c} = h_{\rm w}/l_{\rm w}$	2	hw/lw>2 therefore use 2
	Acv_{total} (in ²) =	1900.8	
	Transverse - ρt =	0.00287	
	Nominal Shear Capacity - Vn (kip) =	567.7943	
	Shear Capacity - ΦVn (kip) =	340.6766	ОК
	Roundary Element Canacity Che	ck	
	$\Delta st (in2) =$	6 24	1_#11
		0.24	
	Pst Pn(max) (kin) =	1163 827	
	Axial Load Capacity - Φ Pn (kip) =	814 679	OK
		0	
	Check With Interaction Diagram	n	
	Determine Confinement Reinforcement for Bo	undary Ele	ements
	Max. Allowable Vert. Spacing - Smax (in) =	4	1
	Vert. Spacing Supplied - S _{supplied} (In) =	4	
	Short Direction (in) =	18	
	Bar Diameter (in) =	0 625	#5 Bar
	Cover from center of Vert. Reinf. To Col. Face (in) =	3	
	As of one Bar (in ²) =	0.31	
	Area Bounded by out-to-out of hoops - Ach (in^2) =	192.5156	
	Short Direction		
	Number of Crossties In Short Derection =	3	
	hc (in) =	13.25	
	Req'd Reinf. In Short Direction - Ash (in^2) =	0.723959	\mathbf{X}
	As provided (in ²) =	0.93	OK Crosstie
	Long Direction		1
		12.25	l
	Rea'd Reinf In Short Direction - Ach (in2) =	0 723050	
	As provided (in^2) =	0.93	OK

		Shear Wall De	esign
Engineer:	Joe Sharkey		
Date:	3/19/2007		
Job:	Christiana Hospital Project		
Shear Wall #	5 - Ground Floor through 2nd		

Material Properties	
Concrete Strength - f'c (psi) =	5000
Reinforcement Strength - fy (psi) =	60000

Wall Dimensions	
Length - d (ft) =	18.58
Width - w (in) =	12
Height - h (ft) =	118

Boundary Element Dimensions	
Length - d _{be} (in) =	30
Width - w _{be} (in) =	30

Wall Loads	
Pu (kip) =	2253
Mu (ft-kip) =	25605
Vu (kip) =	425

Boundary Element	
Axial Force - Pu _{be} (kip) =	2504.595

ACI 21.7.6.3	Boundary Element Check
-	Ag (ft^2) = 21.08
	$lg(in^4) = 780.6036$
	Extreme Fiber Comp Fc (ksi) = 3.143103

	Longitudinal & Transverse Reinforcemen	t	
ACI 21.7.2.2	One Curtain of Reinf. Req.		-
	$Acv (in^2/ft) =$	144	
	Longitudinal - ρ_i , Transverse - ρ_t >= 0.0025		
	$As_{Ireq'd} (in^2/ft) =$	0.36	
	As _{supplied} (in ²) =	0.62	#5 Bars
	Bar Diameter (in) =	0.625	
	Required Spacing - S _{req'd} (in) =	20.66667	NOT OK Spacing Must Be Less Than 18in
	Spacing Supplied - S _{supplied} (in) =	18	
	Shear Capacity Check		
	$\alpha_{\rm c} = h_{\rm w}/l_{\rm w}$	2	hw/lw>2 therefore use 2
	Acv_{total} (in ²) =	3035.52	
	Transverse - ρt =	0.00287	
	Nominal Shear Capacity - Vn (kip) =	952.0714	
	Shear Capacity - ΦVn (kip) =	571.2428	OK
	Boundary Element Canacity Che	rk	
	Ast (in2) =	12 48	8-#11
	$\rho_{\rm ot} =$	0.013867	OK
	Psi Pn(max) (kip) =	3616 608	
	Axial Load Capacity - ΦPn (kip) =	2531.626	ОК
	Check With Interaction Diagram	n	
	Determine Confinement Reinforcement for Re		monte
	Max Allowable Vert Spacing - Smax (in) =		America and a second seco
	Vert. Spacing Supplied - Seuplied (in) =	4	
	Short Direction (in) =	30	1
	Long Direction (in) =	30	
	Bar Diameter (in) =	0.625	#5 Bar
	Cover from center of Vert. Reinf. To Col. Face (in) =	3	
	As of one Bar (in^2) =	0.31	
	Area Bounded by out-to-out of hoops - Ach (in^2) =	669.5156	
	Short Direction	0	
	Number of Crossties in Short Direction =	3 25 25	
	Rea'd Reinf In Short Direction - Ash $(in^2) =$	0 860245	
	As provided (in ²) =	0.003240	OK Crosstie
	Long Direction	0.00	on crossile
	Number of Crossties In Short Direction =	3	
	hc (in) =	25.25	-
	Req'd Reinf. In Short Direction - Ash (in^2) =	0.869245	
	As provided $(in^2) =$	0.93	ОК

	Shear Wall De	esig
Engineer:	Joe Sharkey	
Date:	3/19/2007	
Job:	Christiana Hospital Project	
Shear Wall #	5 - 3rd and 4th Floors	

Material Properties	
Concrete Strength - f'c (psi) =	4000
Reinforcement Strength - fy (psi) =	60000

Wall Dimensions	
Length - d (ft) =	18.58
Width - w (in) =	12
Height - h (ft) =	77.33

Boundary Element Dimensions	
Length - d _{be} (in) =	24
Width - w _{be} (in) =	24

Wall Loads	
Pu (kip) =	1522
Mu (ft-kip) =	10564
Vu (kip) =	284

Boundary Element Axial Force - Pu_{be} (kip) = 1329.568

ACI 21.7.6.3	Boundary Element Check
	Ag (ft^2) = 20.58
	$lg (in^4) = 726.3649$
	Extreme Fiber Comp Fc (ksi) = 1.552844

	Longitudinal & Transverse Reinforcemen	t	
ACI 21.7.2.2	One Curtain of Reinf. Req.		-
	$Acv (in^2/ft) =$	144	
	Longitudinal - ρ_i , Transverse - ρ_t >= 0.0025		
	$As_{Ireq'd}$ (in ² /ft) =	0.36	
	As _{supplied} (in ²) =	0.62	#5 Bars
	Bar Diameter (in) =	0.625	
	Required Spacing - S _{req'd} (in) =	20.66667	NOT OK Spacing Must Be Less Than 18in
	Spacing Supplied - S _{supplied} (in) =	18	
	Shear Capacity Check		
	$\alpha_{\rm c} = h_{\rm w}/l_{\rm w}$	2	hw/lw>2 therefore use 2
	Acv_{total} (in ²) =	2963.52	
	Transverse - ρt =	0.00287	
	Nominal Shear Capacity - Vn (kip) =	885.2429	
	Shear Capacity - ΦVn (kip) =	531.1458	OK
	Boundary Element Canacity Che	ck	
	Ast (in2) =	12 48	8-#11
	$\rho_{\rm ot} =$	0.021667	OK
	Psi Pn(max) (kip) =	2131 814	
	Axial Load Capacity - ΦPn (kip) =	1492.27	ОК
	Check With Interaction Diagram	n	
	Determine Confinement Reinforcement for Re		monte
	Max Allowable Vert Spacing - Smax (in) =		
	Vert. Spacing Supplied - S _{supplied} (in) =	4	
	Short Direction (in) =	24	
	Long Direction (in) =	24	
	Bar Diameter (in) =	0.625	#5 Bar
	Cover from center of Vert. Reinf. To Col. Face (in) =	3	
	As of one Bar $(in^2) =$	0.31	
	Area Bounded by out-to-out of hoops - Ach (in^2) =	395.0156	
	Short Direction	0	
	Number of Crossties in Short Direction =	10.25	
	Rea'd Reinf In Short Direction - Ash $(in^2) =$	0 705582	
	As provided (in ²) =	0.700002	OK Crosstie
		0.00	
	Number of Crossties In Short Direction =	3	
	hc (in) =	19.25	-
	Req'd Reinf. In Short Direction - Ash (in^2) =	0.705582	
	As provided $(in^2) =$	0.93	ОК

63

Shear Wall De		esign	
Engineer:	Joe Sharkey		
Date:	3/19/2007		
Job:	Christiana Hospital Project		
Shear Wall #	5 - 5th through 8th		

Material Properties	
Concrete Strength - f'c (psi) =	4000
Reinforcement Strength - fy (psi) =	60000

Wall Dimensions		
Length - d (ft) =	18.58	
Width - w (in) =	12	
Height - h (ft) =	77.33	

Boundary Element Dimensions		
Length - d _{be} (in) =	24	
Width - w _{be} (in) =	24	

Wall Loads	
Pu (kip) =	1080
Mu (ft-kip) =	4549
Vu (kip) =	198

Boundary Element Axial Force - Pu_{be} (kip) = 784.8332

ACI 21.7.6.3	Boundary Element Check
	Ag (ft ²) = 20.58
	$lg (in^4) = 726.3649$
	Extreme Fiber Comp Fc (ksi) = 0.811953

	Longitudinal & Transverse Reinforcemen	t	
ACI 21.7.2.2	One Curtain of Reinf. Req.		
	Acv $(in^2/ft) =$	144	
	Longitudinal - ρ_l , Transverse - $\rho t \ge 0.0025$		
	$As_{Ireq'd} (in^2/ft) =$	0.36	
	As _{supplied} (in ²) =	0.62	#5 Bars
	Bar Diameter (in) =	0.625	
	Required Spacing - $S_{req'd}$ (in) =	20.66667	NOT OK Spacing Must Be Less Than 18in
	Spacing Supplied - S _{supplied} (in) =	18	
	Shear Capacity Check		
	$\alpha_{c} = h_{w}/l_{w}$	2	hw/lw>2 therefore use 2
	Acv_{total} (in ²) =	2963.52	
	Transverse - pt =	0.00287	
	Nominal Shear Capacity - Vn (kip) =	885.2429	
	Shear Capacity - ΦVn (kip) =	531.1458	ОК
	Boundary Element Capacity Che	ck	
	Ast (in2) =	6.24	4-#11
	$\rho_{\rm st} =$	0.010833	OK
	Pn(max) (kip) =	1849.267	
	Axial Load Capacity - ΦPn (kip) =	1294.487	ок
	Check With Interaction Diagram	n	
	Determine Confinement Reinforcement for Bo	undarv Ele	ements
	Max. Allowable Vert. Spacing - Smax (in) =	4	
	Vert. Spacing Supplied - S _{supplied} (in) =	4	
	Short Direction (in) =	24	
	Long Direction (in) =	24	
	Bar Diameter (in) =	0.625	#5 Bar
	Cover from center of Vert. Reinf. To Col. Face (in) =	3	
	As of one Bar (in ²) =	0.31	
	Area Bounded by out-to-out of hoops - Ach (in^2) =	395.0156	
	Short Direction	0	
	Number of Crosstles In Short Direction =	10.25	
	$\operatorname{Reg'd} \operatorname{Reinf} \operatorname{In} \operatorname{Short} \operatorname{Direction}_{-} \operatorname{Ash} (\operatorname{in}^2) =$	0 705582	
	As provided (in ²) =	0.703302	OK Crossia
	Long Direction	0.00	Crossile
	Number of Crossties In Short Direction =	3	
	hc (in) =	19.25	
	Req'd Reinf. In Short Direction - Ash (in^2) =	0.705582	
	As provided $(in^2) =$	0.93	ОК

		Shear Wall De	esign
Engineer:	Joe Sharkey		
Date:	3/19/2007		
Job:	Christiana Hospital Project		
Shear Wall #	11 - Ground Floor through 2nd		

Material Properties	
Concrete Strength - f'c (psi) =	5000
Reinforcement Strength - fy (psi) =	60000

Wall Dimensions		
Length - d (ft) =	20.67	
Width - w (in) =	12	
Height - h (ft) =	118	

Boundary Element Dimensions	
Length - d _{be} (in) =	24
Width - w _{be} (in) =	24

Wall Loads	
Pu (kip) =	1745
Mu (ft-kip) =	20917
Vu (kip) =	407

Boundary Element	
Axial Force - Pu _{be} (kip) =	1884.45

ACI 21.7.6.3	Boundary Element Check	
	Ag (ft^2) =	22.67
	lg (in ⁴) =	970.8973
	Extreme Fiber Comp Fc (ksi) =	2.230382

Ag (ft^2) = 22.67 Ig (in^4) = 970.8973 Eq. (in^4) = 022222

	Longitudinal & Transverse Reinforcemen	t	
ACI 21.7.2.2	One Curtain of Reinf. Req.		
	$Acv (in^2/ft) =$	144	
	Longitudinal - ρ_i , Transverse - ρ_t >= 0.0025		
	$As_{Ireq'd}$ (in ² /ft) =	0.36	
	As _{supplied} (in ²) =	0.62	#5 Bars
	Bar Diameter (in) =	0.625	
	Required Spacing - S _{req'd} (in) =	20.66667	NOT OK Spacing Must Be Less Than 18in
	Spacing Supplied - S _{supplied} (in) =	16	
	Shear Capacity Check		
	$\alpha_{\rm c} = h_{\rm w}/l_{\rm w}$	2	hw/lw>2 therefore use 2
	Acv_{total} (in ²) =	3264.48	
	Transverse - ρt =	0.003229	
	Nominal Shear Capacity - Vn (kip) =	1094.16	
	Shear Capacity - ΦVn (kip) =	656.4961	OK
	Doundary Flowart Constitut Cha	ak	
	Boundary Element Capacity Che	40.70	10 #11
	Ast (III) =	0.0225	0K
	$p_{st} = p_{st}$	0.0325	UK .
	$Axial I oad Capacity - \Phi Pn (kip) =$	1955 318	OK
	Check With Interaction Diagram	n	
	Determine Confinement Reinforcement for Bo	undary Ele	ements
	Max. Allowable Vert. Spacing - Smax (in) =	4	
	Vert. Spacing Supplied - S _{supplied} (In) =	4	
	Short Direction (in) =	24	
	Bar Diameter (in) =	0 625	#5 Bar
	Cover from center of Vert. Reinf. To Col. Face (in) =	3	
	As of one Bar (in^2) =	0.31	
	Area Bounded by out-to-out of hoops - Ach (in ²) =	395.0156	
	Short Direction		
	Number of Crossties In Short Direction =	4	
	hc (in) =	19.25	
	Req'd Reinf. In Short Direction - Ash $(in^2) =$	0.881978	\mathbf{X}
	As provided (in ²) =	1.24	OK Crosstie
	Long Direction	1	
		4	
	hc (in) =	19 25	
	hc (in) = Reg'd Reinf. In Short Direction - Ash (in ²) =	19.25 0.881978	

		Shear Wall De	esign
Engineer:	Joe Sharkey		
Date:	3/19/2007		
Job:	Christiana Hospital Project		
Shear Wall #	11 - 3rd through 8th		

Material Properties	
Concrete Strength - f'c (psi) =	4000
Reinforcement Strength - fy (psi) =	60000

Wall Dimensions		
Length - d (ft) =	20.67	
Width - w (in) =	12	
Height - h (ft) =	77.33	

Boundary Element Dimensions		
Length - d _{be} (in) =	24	
Width - w _{be} (in) =	24	

Wall Loads	
Pu (kip) =	1192
Mu (ft-kip) =	11670
Vu (kip) =	431

Boundary Element	
Axial Force - Pu _{be} (kip) =	1160.586

ACI 21.7.6.3	Boundary Element Check		
	Ag (ft ²) =	22.67	
	$lg(in^4) = g$	970.8973	
	Extreme Fiber Comp Fc (ksi) = 1	1.311285	

	Longitudinal & Transverse Reinforcemen	t	
AGI 21.7.2.2	Two Curtains of Reinf. Req.		
	Acv (in ² /ft) =	144	
	Longitudinal - ρ_i , Transverse - ρ_i >= 0.0025		
	$As_{Ireq'd}$ (in ² /ft) =	0.36	
	As _{supplied} (in ²) =	0.62	#5 Bars
	Bar Diameter (in) =	0.625	
	Required Spacing - $S_{req'd}$ (in) =	20.66667	NOT OK Spacing Must Be Less Than 18in
	Spacing Supplied - S _{supplied} (in) =	18	
	Shear Capacity Check		
	$\alpha_{\rm c} = h_{\rm w}/l_{\rm w}$	2	hw/lw>2 therefore use 2
	Acv_{total} (in ²) =	3264.48	
	Transverse - pt =	0.00287	
	Nominal Shear Capacity - Vn (kip) =	975.1437	
	Shear Capacity - ΦVn (kip) =	585.0862	OK
	Boundary Element Canacity Cho	ck	
	$\Delta st (in2) =$	6 24	4.#11
		0.010833	OK
	Pst Pn(max) (kin) =	1849 267	
	Axial Load Capacity - Φ Pn (kip) =	1294.487	ОК
	Check With Interaction Diagram	n	
	Determine Confinement Beinforcement for Bei	undary Ela	monts
	Determine Confinement Reinforcement for Bor Max, Allowable Vert, Spacing - Smax (in) =	undary Ele	ements
	Determine Confinement Reinforcement for Bor Max. Allowable Vert. Spacing - Smax (in) =	undary Ele 4 4	ements
	Determine Confinement Reinforcement for Bor Max. Allowable Vert. Spacing - Smax (in) = Vert. Spacing Supplied - S _{supplied} (in) = Short Direction (in) =	undary Ele 4 4 24	ements
	Determine Confinement Reinforcement for Bor Max. Allowable Vert. Spacing - Smax (in) = Vert. Spacing Supplied - S _{supplied} (in) = Short Direction (in) = Long Direction (in) =	undary Ele 4 4 24 24 24	ements
	Determine Confinement Reinforcement for BotMax. Allowable Vert. Spacing - Smax (in) =Vert. Spacing Supplied - S _{supplied} (in) =Short Direction (in) =Long Direction (in) =Bar Diameter (in) =	undary Ele 4 4 24 24 24 0.625	#5 Bar
	Determine Confinement Reinforcement for Bot Max. Allowable Vert. Spacing - Smax (in) = Vert. Spacing Supplied - S _{supplied} (in) = Short Direction (in) = Long Direction (in) = Bar Diameter (in) = Cover from center of Vert. Reinf. To Col. Face (in) =	undary Ele 4 24 24 0.625 3	#5 Bar
	Determine Confinement Reinforcement for Bott Max. Allowable Vert. Spacing - Smax (in) = Vert. Spacing Supplied - S _{supplied} (in) = Short Direction (in) = Long Direction (in) = Bar Diameter (in) = Cover from center of Vert. Reinf. To Col. Face (in) = As of one Bar (in ²) =	undary Ele 4 24 24 0.625 3 0.31	#5 Bar
	Determine Confinement Reinforcement for Bot Max. Allowable Vert. Spacing - Smax (in) = Vert. Spacing Supplied - S _{supplied} (in) = Short Direction (in) = Long Direction (in) = Bar Diameter (in) = Cover from center of Vert. Reinf. To Col. Face (in) = As of one Bar (in ²) = Area Bounded by out-to-out of hoops - Ach (in ²) =	undary Ele 4 24 24 0.625 3 0.31 395.0156	#5 Bar
	Determine Confinement Reinforcement for Bott Max. Allowable Vert. Spacing - Smax (in) = Vert. Spacing Supplied - S _{supplied} (in) = Short Direction (in) = Long Direction (in) = Bar Diameter (in) = Cover from center of Vert. Reinf. To Col. Face (in) = As of one Bar (in ²) = Area Bounded by out-to-out of hoops - Ach (in ²) = Short Direction	undary Ele 4 24 24 0.625 3 0.31 395.0156	#5 Bar
	Determine Confinement Reinforcement for Bott Max. Allowable Vert. Spacing - Smax (in) = Vert. Spacing Supplied - S _{supplied} (in) = Short Direction (in) = Long Direction (in) = Bar Diameter (in) = Cover from center of Vert. Reinf. To Col. Face (in) = As of one Bar (in ²) = Area Bounded by out-to-out of hoops - Ach (in ²) = Short Direction Number of Crossties In Short Direction =	Indary Ele 4 24 24 0.625 3 0.31 395.0156	#5 Bar
	Determine Confinement Reinforcement for Bott Max. Allowable Vert. Spacing - Smax (in) = Vert. Spacing Supplied - S _{supplied} (in) = Short Direction (in) = Long Direction (in) = Bar Diameter (in) = Cover from center of Vert. Reinf. To Col. Face (in) = As of one Bar (in ²) = Area Bounded by out-to-out of hoops - Ach (in ²) = Short Direction Number of Crossties In Short Direction = hc (in) =	undary Ele 4 24 24 0.625 3 0.31 395.0156 3 19.25	#5 Bar
	Determine Confinement Reinforcement for Bott Max. Allowable Vert. Spacing - Smax (in) = Vert. Spacing Supplied - S _{supplied} (in) = Short Direction (in) = Long Direction (in) = Bar Diameter (in) = Cover from center of Vert. Reinf. To Col. Face (in) = As of one Bar (in ²) = Area Bounded by out-to-out of hoops - Ach (in ²) = Short Direction Number of Crossties In Short Direction = hc (in) = Req'd Reinf. In Short Direction - Ash (in ²) =	undary Ele 4 24 24 0.625 3 0.31 395.0156 395.0156 3 19.25 0.705582	#5 Bar
	Determine Confinement Reinforcement for Bott Max. Allowable Vert. Spacing - Smax (in) = Vert. Spacing Supplied - S _{supplied} (in) = Short Direction (in) = Long Direction (in) = Long Direction (in) = Bar Diameter (in) = Cover from center of Vert. Reinf. To Col. Face (in) = As of one Bar (in ²) = Area Bounded by out-to-out of hoops - Ach (in ²) = Short Direction Number of Crossties In Short Direction = hc (in) = Req'd Reinf. In Short Direction - Ash (in ²) = As provided (in ²) =	Indary Ele 4 24 24 0.625 3 0.31 395.0156 395.0156 0.705582 0.705582 0.93	#5 Bar
	Determine Confinement Reinforcement for Bott Max. Allowable Vert. Spacing - Smax (in) = Vert. Spacing Supplied - S _{supplied} (in) = Short Direction (in) = Long Direction (in) = Bar Diameter (in) = Cover from center of Vert. Reinf. To Col. Face (in) = Area Bounded by out-to-out of hoops - Ach (in ²) = Short Direction Number of Crossties In Short Direction = hc (in) = Req'd Reinf. In Short Direction - Ash (in ²) = As provided (in ²) = Long Direction	undary Ele 4 4 24 24 0.625 3 0.31 395.0156 3 19.25 0.705582 0.93	#5 Bar
	Determine Confinement Reinforcement for Bott Max. Allowable Vert. Spacing - Smax (in) = Vert. Spacing Supplied - S _{supplied} (in) = Short Direction (in) = Long Direction (in) = Long Direction (in) = Cover from center of Vert. Reinf. To Col. Face (in) = As of one Bar (in ²) = Area Bounded by out-to-out of hoops - Ach (in ²) = Short Direction Number of Crossties In Short Direction = hc (in) = Req'd Reinf. In Short Direction - Ash (in ²) = As provided (in ²) = Long Direction	undary Ele 4 4 24 0.625 3 0.31 395.0156 3 19.25 0.705582 0.93 19.25	#5 Bar
	Determine Confinement Reinforcement for BottMax. Allowable Vert. Spacing - Smax (in) =Vert. Spacing Supplied - $S_{supplied}$ (in) =Short Direction (in) =Long Direction (in) =Long Direction (in) =Bar Diameter (in) =Cover from center of Vert. Reinf. To Col. Face (in) =As of one Bar (in ²) =Area Bounded by out-to-out of hoops - Ach (in ²) =Short DirectionNumber of Crossties In Short Direction =hc (in) =Req'd Reinf. In Short Direction - Ash (in ²) =Long DirectionNumber of Crossties In Short Direction =hc (in ²) =Long DirectionNumber of Crossties In Short Direction =hc (in ²) =Long Direction	Indary Ele 4 4 24 0.625 3 0.31 395.0156 395.0156 0.705582 0.93 19.25 0.705582	#5 Bar

		Shear Wall De	esign
Engineer:	Joe Sharkey		
Date:	3/19/2007		
Job:	Christiana Hospital Project		
Shear Wall #	12 - Ground Floor through 2nd		

Material Properties	
Concrete Strength - f'c (psi) =	5000
Reinforcement Strength - fy (psi) =	60000

Wall Dimensions		
Length - d (ft) =	18.5	
Width - w (in) =	12	
Height - h (ft) =	118	

Boundary Element Dimensions		
Length - d _{be} (in) =	26	
Width - w _{be} (in) =	26	

Boundary Elemement Needed - fc>0.2 f'c

Wall Loads	
Pu (kip) =	2148
Mu (ft-kip) =	28628
Vu (kip) =	498

Boundary Element	
Axial Force - Pu _{be} (kip) =	2621.459

ACI 21.7.6.3	Boundary Element Check	
	Ag (ft^2) = 20.66667	
	$lg(in^4) = 735.5802$	
	Extreme Fiber Comp Ec. (ksi) = .3.514568	

ACI 21 7 2 2 Two Curtains of Boinf, Bog	
$Acv (in^2/ft) = 144$	
Longitudinal - ρ_i , Transverse - ρ t >= 0.0025	
$As_{Ireq'd} (in^2/ft) = 0.36$	
$As_{supplied} (in^2) = 0.62 \#5 Bars$	
Bar Diameter (in) = 0.625	
Required Spacing - S _{req'd} (in) = 20.66667 NOT OK Spacing Must Be Less Tha	n 18in
Spacing Supplied - S _{supplied} (in) = 18	
Shear Capacity Check	
$\alpha_c = h_w/l_w$ 2 hw/lw>2 therefore use 2	
Acv_{total} (in ²) = 2976	
Transverse - pt = 0.00287	
Nominal Shear Capacity - Vn (kip) = 933.4033	
Shear Capacity - ΦVn (kip) = 560.042 OK	
Boundary Element Canacity Check	
$Ast (in^2) = 37.44 24.411$	
Ast (m) = 0.055385 OK	
$P_{st} = 3968.224$	
Axial Load Capacity - Φ Pn (kip) = 2777.757 OK	
Check With Interaction Diagram	
Determine Confinement Deinforcement for Deundem Elemente	
Determine Confinement Reinforcement for Boundary Liements	
Vert Spacing Supplied - $S_{max}(in) = 4$	
Short Direction (in) = 26	
L ong Direction (in) = 26	
Bar Diameter (in) = 0.625 #5 Bar	
Cover from center of Vert. Reinf. To Col. Face (in) = 3	
As of one Bar $(in^2) = 0.31$	
Area Bounded by out-to-out of hoops - Ach $(in^2) = 478.5156$	
Short Direction	
Number of Crossties In Short Direction = 4	
hc (in) = 21.25	
Req'd Reinf. In Short Direction - Ash $(in^2) = 0.876992$	
As provided (in ²) = 1.24 OK Cross	tie
Long Direction	
Long Direction Number of Crossties In Short Direction = 4 bc (in) = 21 25	
Long DirectionNumber of Crossties In Short Direction =4 $hc (in) =$ 21.25Reg'd Reinf In Short Direction - Ash $(in^2) =$ 0.876992	

		Shear Wall De	esign
Engineer:	Joe Sharkey		
Date:	3/19/2007		
Job:	Christiana Hospital Project		
Shear Wall #	12 - 3rd through 8th		

Material Properties	
Concrete Strength - f'c (psi) =	4000
Reinforcement Strength - fy (psi) =	60000

Wall Dimensions		
Length - d (ft) =	18.5	
Width - w (in) =	12	
Height - h (ft) =	77.33	

Boundary Element Dimensions			
Length - d _{be} (in) =	24		
Width - w _{be} (in) =	24		

Wall Loads	
Pu (kip) =	1492
Mu (ft-kip) =	14122
Vu (kip) =	306

Boundary Element Axial Force - Pu_{be} (kip) = 1509.351

ACI 21.7.6.3	Boundary Element Check	
	$Ag(ft^2) =$	20.5
	$lg(in^4) =$	717.9271
	Extreme Fiber Comp Fc (ksi) =	1.905579

	Longitudinal & Transverse Reinforcemen	t	
ACI 21.7.2.2	One Curtain of Reinf. Req.		
	Acv $(in^2/ft) =$	144	
	Longitudinal - ρ_i , Transverse - $\rho t \ge 0.0025$		
	$As_{Ireq'd}$ (in ² /ft) =	0.36	
	As _{supplied} (in ²) =	0.62	#5 Bars
	Bar Diameter (in) =	0.625	
	Required Spacing - $S_{req'd}$ (in) =	20.66667	NOT OK Spacing Must Be Less Than 18in
	Spacing Supplied - S _{supplied} (in) =	18	
	Shear Capacity Check		
	$\alpha_{c} = h_{w}/l_{w}$	2	hw/lw>2 therefore use 2
	Acv_{total} (in ²) =	2952	
	Transverse - ρt =	0.00287	
	Nominal Shear Capacity - Vn (kip) =	881.8017	
	Shear Capacity - ΦVn (kip) =	529.081	OK
	Roundary Element Canacity Che	ck	
	$\Delta st (in2) =$	18 72	12_#11
		0.0325	OK
	Pst Pn(max) (kin) =	2414 362	
	Axial Load Capacity - Φ Pn (kip) =	1690.053	ОК
	Check With Interaction Diagram	n	
	Determine Confinement Painforcement for Pa	undom/ Elo	monto
	Max Allowable Vert Spacing - Smax (in) =		ments
	Vert Spacing Supplied - Superior (in) =	4	
	Short Direction (in) =		
	Long Direction (in) =	24	
	Bar Diameter (in) =	0.625	#5 Bar
	Cover from center of Vert. Reinf. To Col. Face (in) =	3	
	As of one Bar (in ²) =	0.31	
	Area Bounded by out-to-out of hoops - Ach (in ²) =	395.0156	
	Short Direction		
	Number of Crossties In Short Direction =	3	
	hc(in) =	19.25	
	Req'd Reinf. In Short Direction - Ash $(in^2) =$	0.705582	
	As provided (in ⁻) =	0.93	OK Crosstie
	Number of Crossties In Short Direction =	3	
	hamber of erobatics in enort bitetion =	19.25	I
	Req'd Reinf. In Short Direction - Ash (in^2) =	0.705582	
	As provided $(in^2) =$	0.93	ОК

73

	Shear Wall D	esign
Engineer:	Joe Sharkey	
Date:	3/19/2007	
Job:	Christiana Hospital Project	
Shear Wall #	25,26 - Ground through 2nd Floor	

Material Properties	
Concrete Strength - f'c (psi) =	5000
Reinforcement Strength - fy (psi) =	60000

Wall Dimensions		
Length - d (ft) =	28	
Width - w (in) =	12	
Height - h (ft) =	46.3	

Boundary Element Dimensions		
Length - d _{be} (in) =	24	
Width - w _{be} (in) =	12	

Wall Loads	
Pu (kip) =	2625
Mu (ft-kip) =	8091
Vu (kip) =	241

Boundary Element	
Axial Force - Pu _{be} (kip) =	1601.464

ACI 21.7.6.3	Boundary Element Check	
	$Ag(ft^2) =$	30
	$lg(in^4) =$	2250
	Extreme Fiber Comp Fc (ksi) =	0.982222

OK Without Boundary Element

